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Abstract 

Machine learning is increasingly used across safety-critical domains. In this work, explainable machine learning is applied 

to predict Remaining Useful Life (RUL) of turbofan engines using the NASA C-MAPSS dataset. Multivariate telemetry 

is transformed into history-aware features (10-cycle rolling means/standard deviations and first differences) together with 

a cycle-normalized age signal. Four regressors—Random Forest, XGBoost, LightGBM, and Support Vector Regression—

are trained and then combined via a stacked ensemble. The learning algorithms and key hyperparameters are outlined, and 

models are evaluated using Mean Squared Error (MSE; absolute error magnitude), R² (explained variance), Mean Absolute 

Percentage Error (MAPE; average relative error), and Symmetric MAPE (sMAPE; scale-free percentage error) on an 

engine-wise 80/20 split. Quantitative results identify the stacked model as best overall, with LightGBM and Random 

Forest as strong single learners. Qualitative analysis employs SHapley Additive exPlanations (SHAP) to rank attributes 

that influence RUL, emphasizing life-cycle progression and a compact set of windowed sensor statistics. The paper closes 

with practical implications for maintenance scheduling  

 

Index Terms— Remaining Useful Life (RUL); turbofan engines; Random Forest (RF); XGBoost; LightGBM (LGBM); 

Support Vector Regression (SVR); stacking; SHapley Additive exPlanations (SHAP); explainable AI.  

 

1. Introduction 

Aircraft engines age under shifting loads and environments, so the same platform can degrade at different rates from 

flight to flight; the practical problem is to turn multivariate telemetry and operating settings into reliable RUL estimates 

early enough to plan maintenance and avoid cascading faults, while keeping the reasoning transparent for engineering 

review. The public-safety motivation is underscored by recent events in Gujarat: on June 12, 2025, Air India Flight 171 

crashed shortly after takeoff from Ahmedabad, causing catastrophic loss of life (reported 241 fatalities onboard and 19 

on the ground) and severe structural impact to nearby buildings; official investigations remain ongoing, but the scale and 

immediacy of the tragedy illustrate the value of predictive, explainable maintenance analytics for aviation safety [1].  

To address this need, the present study develops an accurate and explainable RUL pipeline on the NASA C-MAPSS 

turbofan benchmark. Raw sequences are converted into history-aware features (short-window rolling means/standard 

deviations and first differences of key sensors) together with a cycle-normalized age signal that encodes position in the 

life cycle. Four strong tabular regressors—Random Forest (RF), XGBoost, LightGBM (LGBM), and Support Vector 
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Regression (SVR)—are trained and then fused through a stacked meta-learner to leverage complementary strengths. 

Model quality is assessed on held-out engines using Mean Squared Error (MSE), coefficient of determination (R²), Mean 

Absolute Percentage Error (MAPE), and Symmetric MAPE (sMAPE); predictions are interpreted with SHapley Additive 

exPlanations (SHAP) so that the drivers of each estimate, such as life-cycle progression and a compact set of high-impact 

sensor windows, are visible and auditable [2]. The remainder of the paper proceeds as follows: Section II reviews related 

work, Section III details the dataset, features, and modeling pipeline, Section IV reports experiments and SHAP analyses 

(including ablations), Section V discusses implications, limitations, and future directions, and Section VI concludes.  

2. Related Work 

A. “Advancing Aircraft Engine RUL Predictions: An Interpretable Integrated Approach.”   

Alomari et al. [3] propose an integrated, interpretable C-MAPSS pipeline that begins with rolling-window statistics, 

follows with PCA and multiple feature-selection strategies (GA, RFE,  

LASSO, RF importances), and evaluates boosted trees, RF, and  

MLP; they further aggregate feature importance across folds (AFICv) to stabilize interpretation. Advantages include a 

comprehensive feature-engineering workflow tied to time-window statistics and an explicit interpretability layer through 

AFICv/PCA mapping. A limitation is that PCA can blur physical meaning and complicate deployment. The present study 

is similar in using rolling statistics and ensemble learners, but it eschews PCA to keep features human-readable and adds 

a stacked meta-learner and SHAP with a broader metric suite (MSE, R², MAPE, sMAPE).  

B. “An Explainable AI Approach for Remaining Useful Life Prediction.”   

Youness et al. [4] center interpretability by combining feature clustering with a lightweight LSTM and SHAP, arguing 

that clustered features preserve relationships while enabling clearer explanations of RUL estimates on C-MAPSS (FD004). 

Advantages include placing explainability at the center and providing a simple, reproducible network with open code; 

limitations include focus on a single subset and known caveats of SHAP under feature interactions and correlation. By 

contrast, the present work stays in tabular ML  

(RF/XGBoost/LGBM/SVR) with stacking and reports additional relative-error metrics while still leveraging SHAP for 

accountability.  

C. “Stacking-Based Ensemble Learning for Remaining Useful Life Estimation.”   

Ture et al. [5] compare classical ML (LR, SVR, DT, RF, XGB) and DL (CNN/LSTM) on C-MAPSS and show that a 

stacking ensemble achieves the best performance, often surpassing single learners and even CNNs in their setup. This 

supports the use of stacking, although the paper places less emphasis on interpretability and occasionally frames results 

with “accuracy,” which is not standard for continuous RUL evaluation. The present study aligns on stacking but extends 

analysis with model-agnostic explanations (SHAP) and regression-appropriate metrics.  

Building on the insights in [3]–[5] and related explainable modeling in adjacent domains [6], [7], this study orients toward 

advanced yet explainable machine-learning methods for turbofan RUL. In addition to benchmarking strong tabular 

learners, SHAP is incorporated to validate that models rely on physically meaningful drivers (e.g., normalized cycle 

progression and short-window sensor statistics) and to clarify how those drivers shape each prediction [2]. 

Hyperparameters are tuned for boosted trees (XGBoost/LightGBM) [8], [9], Random Forest [10], and SVR, and a stacked 

ensemble learns from out-of-fold base predictions without leakage. Model quality is summarized with R², MSE, MAPE, 

and sMAPE.  
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3. Implementation 

A. Dataset and Target Definition. The C-MAPSS turbofan degradation dataset is used, in which each engine 

instance is a multivariate run-to-failure sequence recorded under varying operating conditions [11]. In this study’s 

working subset, the corpus comprises ≈130 engines and ≈31,000 cycle records; engines are split by identifier into 80% 

training (≈104 engines) and 20% testing (≈26 engines) to prevent leakage across sets while preserving regime diversity. 

The target at each time index is RUL (cycles), defined as the difference between the engine’s terminal cycle and the 

current cycle [11].  

B. Pre-processing and Feature Engineering. Raw sensor streams vary in scale and volatility across engines and 

regimes. To obtain stable, history-aware predictors, the pipeline computes for each sensor 10-cycle rolling mean and 

standard deviation, plus the first difference (). A cycle-normalized age feature, cycle_pct ∈ [0,1], encodes fractional life 

elapsed. All features are standardized with z-score normalization (subtracting the training-set mean and dividing by the 

training-set standard deviation), and the fitted scaler is then applied to validation and test data.  

 Glossary (tokens used in features):  

Token  Meaning  Example  

s_k  Sensor/channel index  s_14 = sensor 14  

mean10, std10  Rolling statistic over last 10 cycles  
s_14_mean10 = 10-cycle 

mean of sensor 14  

diff1  First difference (t − t−1)  s_2_diff1  

cycle_pct  Normalized age (elapsed life %)  scalar in [0,1]  

 C. Modeling Pipeline  

Four tabular regressors—RF [10], XGBoost [8], LGBM [9], and SVR (RBF; radial basis function)—are trained on the 

engineered features, and a stacked ensemble aggregates their predictions using out-of-fold base predictions to avoid 

leakage. Libraries include scikit-learn for RF/SVR/stacking [10], XGBoost [8], and LightGBM [9]. Explanations use 

SHAP (TreeExplainer for tree models; kernel-based approximation for SVR) [2].  

 Model parameters:  

RandomForest Parameters   

Parameter  Value  

n_estimators  200  

max_depth  20  

min_samples_split  2  
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min_samples_leaf  1  

max_features  sqrt  

   

 XGBoost Parameters    

Parameter  Value   

n_estimators   200 

max_depth   6 

learning_rate   0.1 

gamma   0 

subsample   0.8 

colsample_bytree   0.8 

  

LightGBM Parameters    

Parameter  Value   

n_estimators   200 

max_depth   -1 

learning_rate   0.1 

num_leaves   63 

min_child_samples   20 
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 SVR Parameters    

Parameter    Value   

kernel     rbf 

C     10 

epsilon     0.1 

gamma     scale 

shrinking     True 

cache_size (MB)     200 

   

Stacked Ensemble Parameters  

Component  Setting  

Base learners  

RandomForest 

 XGBoost 

LightGBM 

SVR 

Stacking  

out-of-fold (cv=5),  

passthrough=True (meta-learner sees 

base predictions + original features)  

Meta-learner  XGBoostRegressor  

  

Meta-learner (XGBoost) hyperparameters   

Parameter  Value   

n_estimators   100  

max_depth   6  

learning_rate   0.1  
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subsample   0.8  

colsample_bytree   0.8  

reg_lambda   1  

random_state   42  

 

D. Training and Evaluation Protocol. All models are trained on the training-engine set and evaluated on the held-

out engines. Four complementary metrics are reported on the identical test split: MSE, R², MAPE, and sMAPE. For 

robustness, random seeds are fixed for shuffling/training and a single fitted scaler is shared across models.  

E. Explainability. To open the black box, SHAP attributions quantify feature contributions. Tree-based models 

use TreeExplainer, while SVR uses a kernel-based approximation on a representative background sample. Global 

importance is summarized as mean absolute SHAP value per feature; figures report the Top-8 features for each tree-

based model [2].   

4. Experiments and Results 

 

 A. Quantitative Performance   

Table I. Test-set performance on held-out engines   

  

Model  
MSE↓  R²↑  MAPE↓  sMAPE↓  

Random  

Forest  220.15  0.947  10.84%  10.53% 

XGBoost  322.57  0.922  13.40%  12.95% 

LightGBM  217.68  0.947  11.58%  11.25% 

SVR  803.65  0.805  16.75%  16.25% 

Stacked  115.31  0.972  8.37%  8.12% 

 Overall results on the test engines are reported in Table I. Three consistent observations emerge. First, the stacked 

ensemble performs best across all criteria, achieving the lowest error (MSE and sMAPE) and the highest R², indicating 

that the base learners provide complementary views of the degradation process. Second, among single models, 

LightGBM and Random Forest form a strong pair with comparable R² and low absolute/relative errors, providing fast, 

stable baselines [9], [10]. Third, SVR underperforms relative to tree ensembles on this feature construction, likely due to 

its sensitivity to heterogeneous regimes and interaction effects that trees capture more naturally. These patterns hold 
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under repeated runs with fixed seeds, and the rank ordering is stable when small variations are introduced in the feature 

window length.  

B. Qualitative Explanations  

   

Fig. 2. RF,Top-8 mean(|SHAP|) features. 

 

   

Fig. 3. XGBoost,Top-8 mean(|SHAP|) features. 

 

Fig. 4. LightGBM,Top-8 mean(|SHAP|) features. 
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Figures 2–4 depict the Top-8 SHAP features for the three tree models (RF, XGBoost, LGBM). Across models, cycle_pct 

dominates global importance, reflecting the expected monotonic decrease of RUL with elapsed life. A compact set of 10-

cycle rolling means/standard deviations for a few sensors consistently follows, modulating predictions around the global 

age prior by capturing short-term trend and volatility. Cross-model agreement in identity and ordering of top features 

strengthens confidence that the models rely on physically meaningful evidence rather than spurious shortcuts [2].   

C. Robustness and Controls (including Feature Ablation).   

 Leakage control is enforced by splitting by engine ID and training the meta-learner on out-of-fold base predictions. As a 

targeted feature ablation, removing cycle_pct produces a substantial decline in explained variance: Stacked drops from R² 

= 0.972 to 0.912 (Δ = −0.060), LGBM from 0.947 to 0.867 (Δ = −0.080), and RF from 0.947 to 0.877 (Δ = −0.070). In 

contrast, ablating the 10-cycle rolling statistics yields smaller but consistent degradations, indicating their value for local 

adjustment.  

D. Practical Interpretation 

Operationally, the explanations translate into actionable guidance: cycle_pct offers a fleet-level view of wear progression, 

while elevated volatility in a handful of sensors acts as an early- warning modifier for specific engines. Maintenance 

planners can combine both: a high cycle_pct plus rising short-window variability flags units for tightened rising short-

window variability flags units for tightened inspection intervals. 

5. Discussion 

This study demonstrates that a compact, interpretable tabular pipeline can deliver high-accuracy RUL on C-MAPSS 

without resorting to deep sequence models. The stacked ensemble consistently outperforms single learners, while 

LightGBM and Random Forest provide strong, stable baselines [9], [10]. SHAP analyses across models reveal a coherent 

story: cycle_pct acts as a global degradation prior, and a small set of 10-cycle rolling statistics refines estimates by 

capturing recent trends and volatility [2]. These explanations translate directly into practice: fleet managers can use 

cycle_pct for coarse screening and then prioritize units showing elevated short-window variability for closer inspection or 

shortened intervals. Because the high-impact features are simple aggregates over short windows, the approach is 

computationally lightweight and suitable for near-real-time dashboards or edge deployment. From a governance 

standpoint, agreement of top SHAP features across distinct algorithms (RF/XGBoost/LGBM), together with clean engine-

wise splits and out-of-fold stacking, improves auditability and supports monitoring for drift in feature salience over time. 

The evaluation further underscores practical significance: the pipeline trains quickly, is straightforward to deploy, and 

yields actionable cues for maintenance scheduling—fleet-level screening can rely on cycle_pct, while rising short-window 

volatility in a small set of sensors flags engines for tightened inspection windows. At the same time, limitations must be 

acknowledged. Results are reported on a single C-MAPSS subset; different regimes or real-fleet conditions may shift 

feature salience and error profiles. Labels assume linear wear, RUL = T − t, which can under-weight early-life behavior. 

Kernel SHAP for non-tree models is computationally heavy and requires careful background sampling [2]. Looking ahead, 

future work should extend to cross-subset and cross-fleet validation, add uncertainty quantification (e.g., conformal or 

quantile objectives) to provide intervals alongside point predictions, incorporate cost-aware training aligned with 

maintenance penalties, and explore lightweight temporal encoders that preserve SHAP-style interpretability. 

 

 

 

http://www.ijrst.com/


International Journal of Research in Science and Technology                                              http://www.ijrst.com 

 

(IJRST) 2025, Vol. No. 15, Issue No. 4, Oct-Dec                                       e-ISSN: 2249-0604, p-ISSN: 2454-180X 

 

9 

 

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY 

 

6. Conclusion 

An accurate, explainable RUL pipeline for turbofan engines on C-MAPSS was presented. Using history-aware features 

with tabular learners (RF, XGBoost, LightGBM, SVR) and a stacked ensemble, the study achieved strong held-out 

performance; the stacked model performed best overall, while tree ensembles provided reliable single-model baselines 

[8]–[10]. SHAP analyses consistently highlighted cycle_pct and a compact set of windowed sensor statistics as dominant 

drivers, supporting transparent, audit-ready predictions for maintenance planning [2]. The workflow is lightweight and 

reproducible (engine-wise splits, out-of-fold stacking, standardized metrics) [11]–[12], making it practical to deploy and 

transfer across fleets. Future extensions include adding calibrated uncertainty and modest temporal encoders as feature 

generators, while preserving SHAP-level interpretability [2]. 
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